

Key Concepts = "Level 0" Training

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview

1. <u>SEEA-EEA Training (Level 0)</u>

- Overview of training modules
- Accounts
- Tools

© wiktor bubniak / Fotolia.com

Part 2: SEEA-EEA Training

- Accounts and Tools
- Flexible and modular (don't need all Accounts and Tools)
- Three levels:
 - Level 0 (All participants)
 - Level 1 (Compiling)
 - Level 2 (Providing data, country examples)
- Links to related training materials:
 - Secretariat for the Convention on Biological Diversity (SCBD)
 - Quick Start Package (<u>QSP</u>): includes GIS exercises
 - World Bank <u>WAVES</u>

SEEA-EEA Training Level 0

- Learning objectives
 - Understand the basic concepts of SEEA-EEA accounts and tools
 - What is it?
 - Why do we need it?
 - What does it look like?
 - Expertise & data required
 - Links to related training materials
 - For technical & scientific experts, this is:
 - Preparation for Level 1 (Compiling)
 - For policy experts and supporters you will:
 - Understand how to use and who to engage in the discussion

SEEA-EEA accounts and linkages

Physical Accounts (by spatial unit)

Part 2: SEEA-EEA Training (Level 0)

Today's session presents 2-4 slides on each topic:

Accounts

- Ecosystem Extent Account
- Ecosystem Condition Account
- Socio-economic information
- Water Account
- Carbon Account
- Biodiversity Account
- Ecosystem Services Generation Account
- Ecosystem Services Use Account
- Ecosystem Capacity Account
- Augmented I-O tables
- Integrated Ecosystem Institutional Sector Accounts and Balance Sheet

Tools

- Classifications
- Spatial units, scaling and aggregation
- Biophysical modelling
- Valuation

Account 1: Extent

Level 0: Account 1: Extent

- What?
 - **Ecosystem assets** are spatial areas containing a combination of biotic and abiotic components and other characteristics that function together (SEEA-EEA Sections 2.31, 4.1)
 - National coverage of land cover, land use, ownership (terrestrial, freshwater, coastal and marine areas)
- Why?
 - Land management, conservation policies
 - Spatial foundation for other accounts
 - \rightarrow basis for allocating macro data to spatial units
 - Builds on SEEA-CF (land, forest, water)
 - Indicators:
 - Land cover change \rightarrow where changes occurring
 - Land cover/use intensity \rightarrow who owns it

Level 0: Account 1: Extent

What does an Extent Account look like?

	Rainfed herbaceous						Open			
Cover	Urban and associated		cropland		Forest tree cover		Inland water bodies		wetlands	Total
			Permananet							
Use	Infrastructure	Residential	crops	Maintenance	Forestry	Protected	Infrastructure	Aquaculture	Maintenance	
Ownership	Government	Private	Private	Private	Private	Government	Government	Private	Government	
Units	hectares									
Opening Stock										
Additions to Stock										
Managed expansion										
Natural expansion										
Reductions to stock										
Managed regression										
Natural regression										
Closing stock										

Tables

Spatial units Classifications

Level 0: Account 1: Extent

What does an Extent Account look like?

- An integrated spatial (GIS) database that overlays:
 - Land cover: forest, wetland, lake...
 - Use and intensity of use: agriculture, forestry, protected...
 - Ownership: business, private, government
- Classified into Spatial Units
- At high resolution (30m to 100m, maximum 500m) with national coverage
- For two or more periods (change over time)
- Based on comparable Classifications, Quality, Methods and Spatial Units
- Units: hectares
- Records: opening stock, closing stock, additions, reductions

Level 0: Account 1: Extent

- What do you need to compile an Extent Account?
 - GIS platform: software, protocols, spatial units
 - Classifications: land cover, land use, ownership
 - National level data:
 - Existing land account would be useful
 - Satellite: land cover, aerial photography
 - Census: agriculture, population, settlements
 - Forest inventories
 - Hydrological, topographic (rivers, drainage areas, elevation, coastlines)
 - Cadastral (ownership, tax)
 - Expertise:
 - Land managers, ecologists, geographers (GIS, satellite imagery, integration)

Account 2: Condition

Level 0: Account 2: Condition

- What?
 - **Ecosystem condition** reflects the overall quality of an ecosystem asset, in terms of its characteristics. (SEEA EEA paragraph 2.34)
- Why?
 - Policies to limit degradation of natural heritage, rehabilitation of degraded ecosystems
 - Links to capacity to produce services (Services Generation)
 - Indicators:
 - Indices of condition → change over time → where changes
 - Good/bad condition (exceeding "safe" levels) → where

Level 0: Account 2: Condition

What does a Condition Account look like?

Maps

Tables

Level 0: Account 2: Condition

- What does a Condition Account look like?
 - Spatially-detailed condition measures (quality or biophysical) for each characteristic:
 - Vegetation
 - Biodiversity (species abundance, diversity indices)
 - Soil
 - Water
 - Carbon
 - Air
 - Overall measures (e.g., heterogeneity)
 - Selected to reflect an area's capacity to generate services
 - Summarized in terms of an index
 - Accounts for changes over time (accounting period)
 - Attributes changes to **drivers** (natural and human)

Level 0: Account 2: Condition

- What do you need to compile a Condition Account?
 - Ecosystem Asset Account
 - Common spatial database (Spatial units)
 - Data:
 - Condition measures from satellite imagery and field studies over two periods of time
 - Environmental monitoring data (water, air, soil, species)

• Expertise:

- Ecologists (vegetation, soil, water)
- Statisticians (methodologists to create indices, Scaling, Aggregation)
- Environmental policy analysts (focus on relevant indices)
- Geographers (GIS, remote sensing, integration)

Account 3: Water

Level 0: Account 3: Water

• What?

- Spatially-detailed version of SEEA-CF water account to capture:
 - Inter-ecosystem flows of water (4.62),
 - Water quality and
 - Supply/use for ecosystems

• Why?

- Policies on water security, water quality, impacts of water abstraction on ecosystems
- Links to other accounts (Condition, Ecosystem Services Generation)
- Links to SEEA-CF; SEEA-WATER
- Indicators:
 - Local water supply/use, quality (use > supply?)
 - Variability in supply, trends (droughts, floods)

Level 0: Account 3: Water

What does a Water Account look like?

Maps

	Use of water								
		Mining &	Electricity,						
		quarrying,	gas, steam	Water					
	Agriculture,	manufacturing	and air	collection,					
	forestry and	and	conditioning	treatment and		Other			
	fishing	construction	supply	supply	Sewerage	industries	Households	Total use	
				millions m ³					
ource of abstracted water									
Inland water resources									
Surface water									
Goundwater									
Soil water									
Total									
Other water sources									
Precipitation									
Sea water									
Total									
Total use of abstracted water									
Abstracted water									
Distributed water									
Own use									

Tables

Spatial units Classifications Biophysical modelling Socio-economic data

Level 0: Account 3: Water

- What does a Water Account look like?
 - Spatially-detailed data on:
 - Stock
 - Supply, and
 - Use including soil moisture & groundwater
 - Water quality measures (contribution to Condition Account)

Level 0: Account 3: Water

- What do you need to compile a Water Account?
 - Ecosystem Asset Account
 - SEEA-CF Water Account (national level)
 - Common spatial infrastructure (Spatial Units)
 - Data:
 - Spatially-detailed supply (rainfall, transfers)
 - Use (abstraction, inter-ecosystem transfers);
 - Water quality measures
 - Expertise:
 - Geographers (GIS and remote sensing)
 - Hydrologists
 - Ecologists
 - Climatologists

Account 4: Carbon

Level 0: Account 4: Carbon

- What?
 - Accounting for **biocarbon** as an asset (e.g., soil carbon)
 - Carbon-related services (sequestration and storage)
 - Carbon as a characteristic of ecosystem condition (productivity)

• Why?

- Policies on climate change, low-carbon economy
- Assess changes in land cover and land use on carbon stocks and sequestration
- Links to other SEEA accounts (Condition, materials, Services)
- Links to SEEA-CF (timber and soil)
- Links to international guidelines (<u>IPCC</u> and <u>REDD+</u>)
- Indicators:
 - Natural and human additions to carbon stock \rightarrow where
 - Natural and human removals from carbon stock \rightarrow where

Level 0: Account 4: Carbon

What does a Carbon Account look like?

Maps

Tables

	Geocarbon	Biocarbon	Oceans	Atmosphere
Opening stock	10,000	400	20,000	100
Additions	-	4	10	24
Reductions	10	5	9	14
Closing stock	9,990	399	20,001	110

Level 0: Account 4: Carbon

- What does a Carbon Account look like?
 - Spatially detailed in terms of:
 - Stock
 - Additions, and
 - Reductions of biocarbon
 - Natural & human additions and removals

Level 0: Account 4: Carbon

- What do you need to compile a Carbon Account?
 - Ecosystem Extent Account
 - Common spatial infrastructure (Spatial units)
 - Lookup tables (sequestration and storage by land cover type)
 - Data:
 - Biocarbon (above-ground biomass) from satellite data
 - Carbon sequestration and storage from vegetation cover
 - Soil carbon from soil inventories
 - Removals from agriculture & forestry data, fires

• Expertise:

- Ecologists (biophysical modelling)
- Agriculture, forestry experts
- Geographers (GIS, remote sensing)

Account 5: Biodiversity

Level 0: Account 5: Biodiversity

- What?
 - Spatially-detailed statistics on
 - Selected species (abundance, classification, diversity and status)
 - Selected habitats
- Why?
 - Biodiversity and ecosystem policies (natural heritage, conservation); Aichi Target 2; Red-list Species
 - Links to other SEEA accounts (Condition, Ecosystem Services Generation)
 - Indicators:
 - Species populations → changes over time
 - Protected habitats

 changes over time

Level 0: Account 5: Biodiversity

What does a Biodiversity Account look like?

Maps

Tables

Level 0: Account 5: Biodiversity

- What does a Biodiversity Account look like?
 - Spatially-detailed summaries of key species and ecosystems
 - Species groups (genera, families, functional groups)
 - Species characteristics (sensitive, specialist...)
 - Habitat requirements (vegetation, corridors)
 - Habitat conditions (from Condition Account)

Level 0: Account 5: Biodiversity

- What do you need to produce a Biodiversity Account?
 - Ecosystem Extent Account
 - Common spatial infrastructure (Spatial Units)
 - Data:
 - Species ranges, population counts over time
 - Classifications (family, genus)
 - Characteristics (sensitive/tolerant, specialist/generalist, protection status...)
 - Habitat requirements

• Expertise:

- Ecologists (ranges, populations, characteristics...)
- Statisticians (indices, scaling, biophysical modelling)
- Geographers (GIS)

Account 6: Services Generation

Level 0: Account 6: Services Generation

- What?
 - Physical and monetary flows of "final" ecosystem services from ecosystems to beneficiaries
 - Directly used by (or affect) people
- Why?
 - Inform policies of contribution of ecosystems to human well-being
 - Assess trade-offs between development and conservation
 - Link to standard economic production measures in SNA
 - Link to other SEEA-EEA accounts (Condition, Services Use) and tools (Valuation)
 - Indicators:
 - Flows of individual services (physical and monetary) → change
 - Indices of aggregated services by ecosystem type → change

Level 0: Account 6: Services Generation

• What does a Services Generation Account look like?

Maps Tables **Ecosystem type** Land cover Urban and Type of service associated Forest tree cover Agricultural land Open wetlands e.g., tonnes of e.g., tonnes of Provisioning timber wheat Cultural e.g., tonnes of e.g., tonnes of e.g., tonnes of CO_2 stored / CO_2 stored / CO₂ stored / e.g., tonnes of Regulating released released released P absorbed e.g., hectares of e.g., number of e.g., hectares Regulating Cultural visitors / hikers of duck habitat parkland Provisioning Lookup tables **Biophysical modelling**

Level 0: Account 6: Services Generation

Example (services in physical units)

			Land cover type								
										Other	Provincial
Ecosystem service		Units	Urban	Pasture	Cropland	Forest	Heath	Peat	Water	nature	total
Provisioning	Hunting	kg meat	-	9,100	14,732	8,100	678	70		1,513	34,193
	Drinking water extraction	10 ³ m ³ water	4,071	7,026	11,227	3,117	214	-	478	862	26,995
	Crop production	10 ⁶ kg produce	-	-	1,868	-	-	-	-	-	1,868
	Fodder production	10 ⁶ kg dry matter		533	251						784
Regulation	Air quality regulation	10 ³ kg PM ₁₀	272	404	717	700	45	7	40	69	2,254
	Carbon sequestration	10 ⁶ kg carbon	875	8,019	273	50,664	393	149	-	1,056	61,429
Cultural	Recreational cycling	10 ³ trips	2,690	1,863	2,611	1,565	30	3	139	220	9,121

Source: Remme et al., 2014 (Limburg, the Netherlands)

Level 0: Account 6: Services Generation

- What does a Services Generation Account look like?
 - Spatially-detailed physical measures of "final" services according to common Classification:
 - Provisioning
 - Regulating
 - Cultural
 - Physical measures (crops, flood control, clean drinking water, carbon sequestration, recreation, ...)
 - Monetary measures where appropriate and available
 - → Ecosystem Services Supply Account

Level 0: Account 6: Services Generation

- What do you need to create a Services Generation Account?
 - Ecosystem Extent Account, Ecosystem Condition Account
 - Common spatial infrastructure (spatial units)
 - Common classification of services
 - Data:
 - Field studies
 - Transfer from other locations (benefits transfer, valuation)
 - Economic production (agriculture, forestry, fisheries, water)
 - Biophysical modelling
 - **Expertise**: ecologists, geographers (GIS), economists, policy analysts, statisticians

Account 7: Services Use

Level 0: Account 7: Services Use

- What?
 - Physical and monetary flows from ecosystems to **beneficiaries**
- Why?
 - Social, economic and environmental policies:
 - Who benefits from ecosystem services?
 - Who is dependent on ecosystem services?
 - Link to consumption accounts in SNA
 - Link to other SEEA-EEA accounts (Ecosystem Services Generation)
 - Indicators:
 - Dependence on ecosystem services \rightarrow where and whom
 - Public goods from private ecosystems

Level 0: Account 7: Services Use

What does a Services Use Account look like?

Tables

Services Generation Account

Ecosystem type Urban and Type of service associated Forest tree cover Agricultural land Open wetlands e.g., tonnes of e.g., tonnes of Provisioning timber wheat e.g., tonnes of e.g., tonnes of e.g., tonnes of CO₂ stored / CO₂ stored / CO_2 stored / e.g., tonnes of released released P absorbed Regulating released e.g., hectares of e.g., number of e.g., hectares of duck habitat Cultural parkland visitors / hikers

		Use			
Service Type	Ecosystem Type	Enterprises	Households	Government	Rest of the world
	Urban and associated				
Descriptions	Forest tree cover				
Provisioning	Agricultural land				
	Open wetlands				
	Urban and associated				
Descriptions	Forest tree cover				
Regulating	Agricultural land				
	Open wetlands				
Cultural	Urban and associated				
	Forest tree cover				
	Agricultural land				
	Open wetlands				

Level 0: Account 7: Services Use

- What does a Services Use Account look like?
 - Aggregate tables of use of ecosystem services (by beneficiary and ecosystem type)
 - Physical measures
 - Monetary measures where appropriate and available

Level 0: Account 7: Services Use

- What do you need to compile a Services Use Account?
 - Services Generation Account
 - Data:
 - Beneficiaries of ecosystem services (by service, type of beneficiary and type of asset)
 - **Expertise**: Ecosystem accounting

Account 8: Capacity

Level 0: Account 8: Capacity

- What?
 - Expected flows of services
 - Modeled using Ecosystem Condition Account
 - Current and future capacity to generate services
- Why?
 - Policies related to changing land use, land use intensity, environmental quality, population distribution
 - Ecosystem assessments: Trade-off scenarios of services for different future conditions
 - Estimate Services Generation if little data available

Indicators:

- Calculate Ecosystem Asset Account
 - "Value" is Net Present Value of future flows of services

Level 0: Account 8: Capacity

What do Capacity Accounts look like?

Condition Account (Current)

			Ecosystem condition					
Ecosystem type	Ecosystem extent Area	Vegetation	Biodiversity	Soil	Water	Carbon	Inde	
			ł	nectares				
Urban and								
associated								
Rainfed								
herbaceous								
cropland								
Forest tree								
cover								
Inland water								
bodies								
Open wetlands								

Ca	pacity	(Cu	rrent)
		$\sqrt{-2}$	••••

	Ecosystem type					
	Urban and					
Type of service	associated	Forest tree cover	Agricultural land	Open wetlands		
		e.g., tonnes of	e.g., tonnes of			
Provisioning		timber	wheat			
	e.g., tonnes of	e.g., tonnes of	e.g., tonnes of			
	CO ₂ stored /	CO ₂ stored /	CO ₂ stored /	e.g., tonnes of		
Regulating	released	released	released	P absorbed		
	e.g., hectares of	e.g., number of		e.g., hectares		
Cultural	parkland	visitors / hikers		of duck habitat		

Assumptions about future

Condition Account (Future)

		Ecosystem condition					
Ecosystem type	Ecosystem extent						
Leosystem type	Area	Vegetation	Biodiversity	Soil	Water	Carbon	Index
				nectares			
Urban and							
associated							
Rainfed							
herbaceous							
cropland							
Forest tree							
cover							
Inland water							
bodies							
Open wetlands							

Biophysical Modelling

Capacity (Future)

	Ecosystem type				
	Urban and				
Type of service	associated	Forest tree cover	Agricultural land	Open wetlands	
		e.g., tonnes of	e.g., tonnes of		
Provisioning		timber	wheat		
	e.g., tonnes of	e.g., tonnes of	e.g., tonnes of		
	CO ₂ stored /	CO ₂ stored /	CO ₂ stored /	e.g., tonnes of	
Regulating	released	released	released	P absorbed	
	e.g., hectares of	e.g., number of		e.g., hectares	
Cultural	parkland	visitors / hikers		of duck habitat	

Level 0: Account 8: Capacity

- What do Capacity Accounts look like?
 - Spatially-detailed: by ecosystem and service type
 - Looks the same as the Services Generation Account
 - But: Service flows are modelled
 - Biophysical models estimate Capacity from Condition
 - Capacity Accounts record "hypothetical" flow of services
 - e.g., water purification potential of wetlands if there is no pollution or beneficiaries
 - Assumptions about the future are used to generate a future Conditions Account
 - Biophysical models estimate Future Capacity Account

Level 0: Account 8: Capacity

- What do you need to compile a Capacity Account?
 - Extent Account and Condition Account
 - Ecosystem services classification
 - Assumptions about the future
 - Data:
 - Ecological production functions
 - Models may be generic or calibrated to local conditions

• Expertise:

- Ecologists (modelling & production functions)
- Spatial analysts (many models are linked to GIS packages)
- Ecosystem accounting (to ensure coherence)
- Stakeholders (to agree on future scenarios)

Account 9: Augmented I-O

Level 0: Account 9: Augmented I-O

- What?
 - Augmentation of standard Input-Output tables to take into account ecosystems (producers) and ecosystem services (commodities)
- Why?
 - Show contribution of ecosystems and services to the economy (direct and indirect)
 - Support decisions about the economic impacts of ecosystem change
 - Link to SNA
 - Use I-O methods to balance production and consumption

Level 0: Account 9: Augmented I-O

What do Augmented I-O Accounts look like?

Augmented I-O

Services Supply

	Ecosystem type				
	Urban and				
Type of service	associated	Forest tree cover	Agricultural land	Open wetlands	
		e.g., tonnes of	e.g., tonnes of		
Provisioning		timber	wheat		
	e.g., tonnes of	e.g., tonnes of	e.g., tonnes of		
	CO ₂ stored /	CO ₂ stored /	CO ₂ stored /	e.g., tonnes of	
Regulating	released	released	released	P absorbed	
	e.g., hectares of	e.g., number of		e.g., hectares	
Cultural	parkland	visitors / hikers		of duck habitat	

			Producers					
				SNA indus	Ecosystems			
	Commodi	ties	1	2	3	4	1	2
	SNA Commodities	1						
		2		Standard	I-O Table			
		3						
		4						
	Ecosystem Services	Provisioning						
\geq		Regulating						
		Cultural						

Services Use

		Use			
Service Type	Ecosystem Type	Enterprises	Households	Government	Rest of the world
	Urban and associated				
Descriptions	Forest tree cover				
Provisioning	Agricultural land				
	Open wetlands				
	Urban and associated				
0	Forest tree cover				
Regulating	Agricultural land				
	Open wetlands				
	Urban and associated				
Cultural	Forest tree cover				
	Agricultural land				
	Open wetlands				

Level 0: Account 9: Augmented I-O

- What do you Augmented I-O Accounts look like?
 - National level I-O tables (provincial or state if available)
 - Rows added for commodities (ecosystem services)
 - Columns added for producers (ecosystems)
 - Physical or monetary
 - Need monetary to balance

Level 0: Account 9: Augmented I-O

- What do you need to compile Augmented I-O Accounts?
 - Services Generation Account (physical)
 - Services Supply Account (monetary)
 - Services Use Accounts (physical and monetary)
 - Data:
 - Economic production functions including ecosystem services
 - e.g., crop = f(ecosystem services, capital, labour...)
 - Expertise:
 - Input-Output experts (set up and operation)
 - Productivity experts (production functions)
 - Ecological economists (production functions)

Account 10: Integrated Sector Accounts and Balance Sheet

Level 0: Account 10: Integrated Sector Accounts and Balance Sheet

- What?
 - Sector level summary accounts
 - Standard aggregates adjusted for degradation
- Why?
 - Augment the economic accounts of the SNA by integrating into a sequence of accounts
 - Integrated Sector Accounts produce aggregate measures of economic activity, such as national income and saving, which are adjusted for ecosystem degradation.
 - Balance Sheets compare the values of ecosystem assets with values of produced assets, financial assets (and liabilities) and other economic assets.

Level 0: Account 10: Integrated Sector Accounts and Balance Sheet

What do Integrated Sector Accounts and Balance Sheet look like?

Level 0: Account 10: Integrated Sector Accounts and Balance Sheet

- What do Integrated Sector Accounts and Balance Sheet look like?
 - For example, the Production Account takes
 - Total Output
 - Less: Intermediate consumption
 - = Gross Value Added
 - Less: Consumption of Fixed Capital
 - = Net Value Added
 - Less Depletion/Degradation of natural resources
 - = Depletion-adjusted Net Value Added
 - Similar calculations result in other important indicators:
 - Depletion-adjusted Net Saving

Level 0: Account 10: Integrated Sector Accounts and Balance Sheet

- What do you need to compile Integrated Sector Accounts and Balance Sheet?
 - Asset Account
 - Ecosystem Services Supply Account
 - Ecosystem Services Use Account
 - SNA
- Data:
 - Monetary value of assets, services
- Expertise:
 - National accounting
 - Ecosystem accounting

Supporting information: Socio-economic

- What?
 - Socio-economic data and other Drivers of change
- Why?
 - People, governments and businesses are Drivers of change and beneficiaries of Ecosystem Services
 - Understand **why** a change occurred (natural or human?)
 - Support scenarios of future (Capacity Account)
 - Links to SEEA-EEA accounts (Asset, Condition, Water, Carbon, Biodiversity, Services Generation, Services Use)
 - Indicators:
 - Allocate changes in assets to local, national and global drivers
 - Allocate generation of services to beneficiaries
 - Estimate dependence of population and business on ecosystems (food security, water security, flood risks)

- What does Socio-economic Information look like?
 - Drivers of change:
 - Maps or tables to explain changes in Assets, Conditions and Services Generation
 - e.g., changes in land-use
 - e.g., trends in rainfall
 - Socio-economic data:
 - Maps or tables to explain business and population drivers
 - e.g., changes in commodity prices
 - e.g., trends in population growth
 - Maps or tables to calculate beneficiaries
 - e.g., population distribution

- What do you need to compile Socio-economic information?
 - Common spatial infrastructure (spatial units)
 - Drivers of change data:
 - Local, global climate
 - Global, national, local economic conditions (GDP, employment, growth rates)
 - Local activities (agriculture intensity, forestry intensity, recreation intensity)
 - Local development plans (land use, urban expansion)
 - **Expertise**: Economists, climate specialists, sociologists, regional planners

- What do you need to compile Socio-economic information?
 - Socio-economic data:
 - Local population distribution (Census, surveys, case studies):
 - Income
 - Industry of employment
 - Dependence on nature (Case studies)
 - Business types by location (surveys, Business Register)
 - Environmental protection expenditures
 - Dependence on nature (biomass, energy, water, pollution regulation...)
 - **Expertise:** Economists, sociologists, statisticians, geographers (GIS, integration)

End of Accounts...

Questions? Discussion

- Prepare for group exercise...think about:
 - What are your priority accounts?
 - What are the opportunities to produce them?
 - Stakeholders?
 - Institutional mechanisms?
 - Current activities?
 - What are the constraints?
 - Data?
 - Capacity?
- Next up: Tools

Fritiliti

Level 0: Tools

- Classifications
- Spatial units, scaling & aggregation
- Biophysical modelling
- Valuation: Linking to economic accounts
- Other tools:
 - Statistical quality guidelines
 - Interdisciplinary teams
 - Case studies and surveys
- Not discussed: GIS (spatial analysis), data analysis, communications, engagement, data management, project planning and evaluation...

Tools 1: Classifications

Level 0: Tools 1: Classifications

- What?
 - From SEEA-CF:
 - Land use
 - Economic units, industry sectors
 - New and improved:
 - Land cover (terrestrial, freshwater, coastal and marine)
 - "Final" services

Why?

- Accounting needs consistent and coherent classifications
 - Consistent: use same classification for same concept
 - Coherent: with other classifications
 - Comprehensive: Classifications Certify Complete Coverage

Level 0: Tools 1: Classifications

Land Cover

- Based on SEEA-CF
 (p.276) criteria
- Uses FAO LCCS3 (Food and agriculture Organization – Land Cover Classification System v3)
- High-level aggregate:
 - May adapt to local situations
 - Used as basis for "ecosystem type"

Cover classes

- Urban and associated developed areas
- Medium to large fields rainfed herbaceous cropland
- Medium to large fields irrigated herbaceous cropland
- Permanent crops, agriculture plantations
- Agriculture associations and mosaics
- Pastures and natural grassland
- Forest tree cover
- Shrubland, bushland, heathland
- Sparsely vegetated areas
- Natural vegetation associations and mosaics
- Barren land
- Permanent snow and glaciers
- Open wetlands
- Inland water bodies
- Coastal water bodies
- Sea

Level 0: Tools 1: Classifications

Land Use

- From SEEA-CF (p. 266)
- More detail (4-digit)

1.0 Land

- 1.1 Agriculture
- 1.2 Forestry
- 1.3 Aquaculture
- 1.4 Built up and related areas
- 1.5 Maintenance and restoration of environmental functions
- 1.6 Other uses of land
- 1.7 Land not in use

2.0 Inland waters

- 2.1 Aquaculture and holding facilities
- 2.2 Maintenance and restoration of environmental functions
- 2.3 Other uses of inland waters
- 2.4 Inland waters not in use

3.0 Coastal waters

- 3.1 Aquaculture and holding facilities
- 3.2 Maintenance and restoration of environmental functions
- 3.3 Other uses of coastal waters
- 3.4 Coastal waters not in use

4.0 Exclusive Economic Zone (EEZ)

- 4.1 Aquaculture and holding facilities
- 4.2 Maintenance and restoration of environmental functions
- 4.3 Other uses of coastal waters
- 4.4 Coastal waters not in use

Level 0: Tools 1: Classifications

- Services
- Based on Common International Classification of Ecosystem Services (CICES)
- Not mutually exclusive
- A list of "final" services
- More detail (4-digit)
- Does not include "supporting services" (= ecosystem functions)

Section	Division	Group
	01 01 Nutrition	01.01.01 Biomass
		01.01.02 Water
01 Provisioning	01 02 Materials	01.02.01 Biomass
OI. FIOVISIONINg		01.02.02 Water
	01 02 Eporgy	01.03.01 Biomass-based energy sources
	01.05 Ellergy	01.03.02 Mechanical energy
	02.01 Mediation of waste,	02.01.01 Mediation by biota
	toxics and other nuisances	02.01.02 Mediation by ecosystems
		02.02.01 Mass flows
	02.02 Mediation of flows	02.02.02 Liquid flows
		02.02.03 Gaseous / air flows
02. Regulation &		02.03.01 Lifecycle maintenance, habitat and gene pool
Maintenance		protection
	02.03 Maintenance of	02.03.02 Pest and disease control
	physical, chemical,	02.03.03 Soil formation and composition
	biological conditions	02.03.04 Water conditions
		02.03.05 Atmospheric composition and climate
		regulation
	03.01 Physical and intellectual interactions	03.01.01 Physical and experiential interactions
03. Cultural	with biota, ecosystems, and land-/seascapes [environmental settings]	03.01.02 Intellectual and representative interactions
	03.02 Spiritual, symbolic and other interactions with	03.02.01 Spiritual and/or emblematic
	biota, ecosystems, and land- /seascapes [environmental settings]	03.02.02 Other cultural outputs

Level 0: Tools 1: Classifications

- From SEEA-CF: Economic Units
 - Enterprises (business \rightarrow industry)
 - Households (people and non-corporate business)
 - Government
 - Rest of the world
- As beneficiaries, suppliers of ecosystem services
- SEEA-EEA adds a spatial dimension:
 - Local
 - Regional
 - National
 - Global

Tools 2: Spatial units

Level 0: Tools 2: Spatial units

What?

- A common definition of Spatial Units for all accounts
- Based on surface characteristics (terrestrial, freshwater, coastal and marine)

Why?

- Accounting needs **statistical units** about which information is compiled, derived, reported and compared
 - e.g., business statistics are built on locations, establishments, companies and enterprises
- Information is collected on many **spatial levels**
 - Needs to be consolidated within a GIS (Geographic Information System) or spatial model
- First step in tabulating & aggregating more detailed data
 - Not everybody is a GIS expert
- Links accounts together (Assets, Conditions, Services Generation...)

Level 0: Tools 2: Spatial units

Recommended three levels: hierarchical and mutually exclusive:

- Basic Spatial Unit (BSU) 1.
 - Pixel or grid cell
- Land Cover Ecosystem Functional Unit (LCEU) 2.
 - Homogenous according to criteria (cover, slope, drainage area, elevation...)
 - Consolidate for tables by LCEU type
- 3. Ecosystem Accounting Unit (EAU)
 - For reporting (sub-drainage area, administrative area...)

→ Establishes Ecosystem Extent Account

Source: Statistics Canada, 2013

Level 0: Tools 2: Scaling

What?

• Converting information from one scale to another (spatial, temporal, thematic)

Why?

- Information exists in various types:
 - Point (water quality monitoring, "study sites", etc.)
 - Area (land cover, protected area, species range, etc.)
 - Network (roads, streams, corridors, etc.)
- Need to understand how and when to attribute information from one scale to another

Level 0: Tools 2: Scaling

Main approaches

- Downscaling
 - Attributing information from larger areas to smaller areas contained within them
 - Caution: Data need to be evenly distributed
- Upscaling
 - Attributing information from smaller areas to larger areas
 - Caution: Data need to be representative

Transfer

- Transferring information measured in one location to another
- Often used in terms of **Benefits Transfer**
- Caution: Locations need to be very similar

Level 0: Tools 2: Aggregation

What?

- Combining many measures into simpler ones
- Dissimilar measures may be aggregated using:
 - Indices (e.g., water quality index)
 - Conversion to common units (e.g., CO₂ equivalents)

Why?

- Accounting requires aggregates (of dollars, business types, sub-populations, regional summaries, national indicators...)
- Summary indicators for dashboards, linking to economic accounts

Level 0: Tools 2: Aggregation

- Aggregating dissimilar biophysical measures:
 - Requires indexing (comparison with reference)
 - Example: ecosystem condition measures, service measures
 - Caution: Requires understanding of relative importance of component measures (weighting)

Final aggregates

- e.g., total value of ecosystem services, total asset value
- Require many assumptions (relative importance, methods...)
- Services can be competing, complementary or independent
- **Caution**: Monetary valuation is often applied inappropriately
- → Valuation results can be misleading

Tools 3: Biophysical modelling

Level 0: Tools 3: Biophysical modelling

What?

- Four main approaches:
- 1. Look-up tables
- 2. Statistical approaches
- 3. Geostatistical interpolation
- 4. Process-based modelling

Why?

- Estimate **Ecosystem Services** across spatial units and time
- Estimate Ecosystem Capacity from Ecosystem Condition
- Combine data from various sources and scales (e.g., point field data and satellite data)
- Estimate unknown data values
- GIS-based spatial modelling approaches have methods built-in

Level 0: Tools 3: Biophysical modelling

Approaches:

- 1. Look-up tables
- 2. Statistical approaches
- 3. Geostatistical interpolation
- 4. Process-based modeling

Attribute values for an ecosystem service (or other measure) to every **Spatial Unit** in the same class (e.g., a land cover class).

- Example: Benefits Transfer
- one ha of forest = \$5000
 → attribute to each ha of forest
- error rate: 60-70%

Level 0: Tools 3: Biophysical modelling

Approaches:

- 1. Look-up tables
- 2. Statistical approaches
- 3. Geostatistical interpolation
- 4. Process-based modeling

Estimate ecosystem services, asset or condition based on known explanatory variables such as soils, land cover, climate, distance from a road, etc., using a statistical relation.

- Example: Function Transfer
- Value = f(land cover, population, roads, climate)
- Error rate = 40-50%

Level 0: Tools 3: Biophysical modelling

Approaches:

- 1. Look-up tables
- 2. Statistical approaches
- 3. Geostatistical interpolation→
- 4. Process-based modeling

Use algorithms to predict the measure of unknown locations on the basis of measures of nearby known measures:

- Example: Kriging
- Error rate = ?

Level 0: Tools 3: Biophysical modelling

Approaches:

- 1. Look-up tables
- 2. Statistical approaches
- 3. Geostatistical interpolation
- 4. Process-based modeling

Predict ecosystem services based on a set of future condition or management scenarios:

- Example: Scenario for future services based on expected changes in land cover, demand and management
- Error rate = 100%

Tools 4: Valuation techniques

Level 0: Tools 4: Valuation

What?

- Attributing economic or social value to assets & services
- Ecosystem services valuation produces:
 - Average values (per hectare, under specific conditions)
 - Or Marginal values (change in value of converting one hectare)
- Asset valuation:
 - □ Scenarios of future Conditions and demand → net present value of ecosystem

Why?

- Integrate with SNA
 - Augmented I-O, Integrated Sector Accounts and Balance Sheet
- Assessing trade-offs: Convert or protect?
- Monetary valuation is embedded in many:
 - National plans: cost/benefit, payment & compensation schemes
 - Research approaches: contingent valuation, choice modelling

Level 0: Tools 4: Valuation

Approaches (non-market):

- Revealed preferences:
 - Production function (resource rent)
 - value = f(ecosystem, produced capital, labour)
 - Replacement cost: produce service with another ecosystem/asset
 - Hedonic pricing: real-estate prices, wages with respect to distance
 - Averting behaviour: expenditures to avoid degradation
 - Travel cost: expenditures to enjoy a service (e.g., recreation)
- Stated preference:
 - Contingent valuation, choice modelling: willingness to pay
- Simulated exchange values: model supply/demand
- Payments for ecosystem services (PES):
 - Carbon, biodiversity markets
- Payments made to improve condition: Rehabilitation costs

Level 0: Tools 4: Valuation

Measurement challenges

- More challenging for Regulating and Cultural Services
- How to measure monetary value of regulating services?
 - Spatial dependencies (downstream, species/habitat)
 - Multiple beneficiaries
 - Risks (e.g., flood control, climate regulation)
- Non-linear responses
 - Thresholds/resilience, climate change, refuge areas
- Aggregating values of different services
 - Services can be competing, complementary or independent
- Transferring measured values from one site to another
 - (Discussed under Biophysical Modelling & Scaling)
- Highly dependent on decision context
 - Project assessment: trade-offs
 - Long-term sustainable use of ecosystems: high-level indicators
 - Payments and compensation: needs to have precise values

Tools 5: Other tools

Level 0: Tools 5: Other tools

- What?
 - Statistical quality guidelines
- Why?

 Need a common concept of quality, uncertainty and "fitness for use"

How?

- Apply national or international guidelines
 - UN National Quality Assurance Framework (NQAF)
 - International Monetary Fund Data Quality Assessment Framework (DQAF)
 - Disciplinary "accepted methods" are less-well documented
- Build a culture of quality:
 - Metadata, process documentation, strategic planning...

Level 0: Tools 5: Other tools

- What?
 - Interdisciplinary teams (ecology, economics, geography, policy, sociology, statistics...)

• Why?

- No single discipline can do it alone
 - \rightarrow Need a shared "language"
 - → Need to become transdisciplinary

How?

- Agree on common objectives and approaches
- Work together to avoid dividing project into disciplinary "stovepipes"
- Include experts, data providers, users and supporters on your team

Level 0: Tools 5: Other tools

- What?
 - Case studies & surveys linking services with benefits
- Why?
 - In some countries, there is a close relationship between ecosystem services and poverty, water security, food security, employment...
 - Link ecosystem condition, services with socio-economic priorities (well-being, health, income, employment...)

How?

- Local surveys for priority stakeholders (e.g., dependent on ecosystem services)
- National sample surveys (e.g., water use, importance of nature, expenditures on environmental protection...)

Other related training materials

- Secretariat for the Convention on Biological Diversity (SCBD)
 - Quick Start Package (QSP) (Weber, 2014)
 - Available online at <u>www.ecosystemaccounting.net</u>
 - Includes free GIS software and tutorials
 - National Biodiversity Strategies and Action Plans
 - Training modules at <u>www.cbd.int/nbsap/training/</u>
- World Bank WAVES
- Statistics Canada:
 - Measuring Ecosystem Goods and Services Teacher's Kit

Evaluation of the training module

- Please complete the evaluation form for this module
- Online version: <u>http://tinyurl.c`om/pbopmy2</u>
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

References

- SNA 2008
- SEEA Central Framework, SEEA-EEA, applications
- SCBD Quick Start Package (www.ecosystemaccounting.net)
- World Bank WAVES: <u>Designing Pilots for Ecosystem Accounting</u>
- International Monetary Fund: <u>DQAF</u>
- UN: <u>NQAF</u>
- UNECE: <u>GSBPM</u>

Australian Bureau of Statistics, 2013. Land Account: Queensland, Experimental Estimates, 2013

Eigenraam, M., Chua, J. and HASKER, J., 2013. Environmental-Economic Accounting: Victorian Experimental Ecosystem Accounts, Version 1.0.Melbourne, Australia: Department of Sustainability and Environment, State of Victoria.

- Remme, Roy P., Matthias Schröter, and Lars Hein. "Developing spatial biophysical accounting for multiple ecosystem services." Ecosystem Services 10 (2014): 6-18.
- Statistics Canada, 2013. Human Activity and the Environment: Measuring Ecosystem Goods and Services 2013. 16-201-XWE. Ottawa: Government of Canada.
- Weber, J., 2014. Ecosystem Natural Capital Accounts: A Quick Start Package. 77
 - (Technical Series). Montreal: Secretariat of the Convention on Biological Diversity.

Acknowledgements

- This project is a collaboration between The United Nations Statistics Division (UNSD), United Nations Environment Programme (UNEP) and the Secretariat of the Convention on Biological Diversity (CBD) and is supported by the Government of Norway.
- Contact: <u>seea@un.org</u>

